

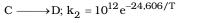
Date Planned ://	Daily Tutorial Sheet-8	Expected Duration : 90 Min
Actual Date of Attempt ://	Level-2	Exact Duration :

- 96. In the reaction: $2N_2O_5 \longrightarrow 4NO_2 + O_2$, the initial pressure is 500 atm and rate constant k is $3.38 \times 10^{-2} \, \text{min}^{-1}$. After 10 min the final pressure of N_2O_5 is :
 - **(A)** 490 atm

(B) 350 atn

(C) 480 atm

- **(D)** 420 atm
- 97. The activation energy of exothermic reaction $A \longrightarrow B$ is 80kJ mol^{-1} . The heat of reaction is -200 kJ mol^{-1} . The activation energy for the reaction $B \longrightarrow A$ (in kJ mol⁻¹) will be:
 - **(A)** 80


(B) 120

(C) 40

- **(D)** 280
- **98.** For the two gaseous reactions, following data are given

A
$$\longrightarrow$$
 B; $k_1 = 10^{10} e^{-20,000/T}$; C

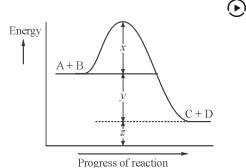
the temperature at which k_1 becomes equal to k_2 is:

(A) 400 K

(B) 1000 K

(C) 800 K

(D) 1500 K


99. Given the following diagram for the reaction

The enthalpy change and activation energy for the reverse reaction, $C+D \longrightarrow A+B$ are respectively.

- **(B)** x, x + y
- (C) y, x + y
- **(D)** y, y + z

The rate constant of a first order reaction at 27° C is 10^{-3} min⁻¹. The temperature coefficient of this reaction is 2. What is the rate constant (in min⁻¹) at 17° C for this reaction?

(A) 10^{-3}

(B) 5×10^{-4}

(C) 2×10^{-3}

(D) 10^{-2}

101. For the reaction, $2NH_3 \longrightarrow N_2 + 3H_2$, $-\frac{d[NH_3]}{dt} = k_1[NH_3]$, $\frac{d[N_2]}{dt} = k_2[NH_3]$, $\frac{d[H_2]}{dt} = k_3[NH_3]$

Then relation between $k_1,\,k_2$ and k_3 is :

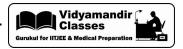
(A) $1.5 \text{ k}_1 = 3\text{k}_2 = \text{k}_3$

(B) $2k_1 = k_2 = 3k_3$

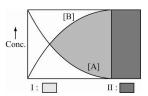
(C) $k_1 = k_2 = k_3$

(D) $k_1 = 3k_2 = 2k_2$

102. A catalyst lowers the energy of activation by 25%. The temperature at which rate of uncatalysed reaction will be equal to that of the catalysed one at 27°C is:


(A) 400°C

(B) 127°C


(C) 300°C

(D) 227°C

100.

- 103. In the following graphical representation for the reaction $A \longrightarrow B$, there are two types of regions:
 - (A) I and II both represent kinetic region at different time intervals
 - **(B)** I and II both represent equilibrium region at different time intervals
 - (C) I represents kinetic while II represents equilibrium region
 - **(D)** I represents equilibrium while II represents kinetic region

- **104.** For a reaction of reversible nature, net rate is $\left(\frac{dx}{dt}\right) = k_1[A][B] k_2[C]$ hence, given reaction is:
 - (A) $2A + B \xrightarrow{k_1 \atop k_2} C$

(B) $A + B \xrightarrow{k_1} C$

(C) $2A \stackrel{k_1}{\rightleftharpoons} C + B$

- **(D)** $A + B \xrightarrow{k_2} C$
- *105. Rate constant k varies with temperature by equation, $\log k (min^{-1}) = 5 \frac{2000 \text{ K}}{T}$. We can conclude
 - (A) pre-exponential factor A is 5
- **(B)** E_a is 2000 kcal
- (C) pre-exponential factor A is 10^5
- **(D)** E_a is 9.212 kcal